Fighting Bloat with Nonparametric Parsimony Pressure

نویسندگان

  • Sean Luke
  • Liviu Panait
چکیده

Many forms of parsimony pressure are parametric, that is final fitness is a parametric model of the actual size and raw fitness values. The problem with parametric techniques is that they are hard to tune to prevent size from dominating fitness late in the evolutionary run, or to compensate for problem-dependent nonlinearities in the raw fitness function. In this paper we briefly discuss existing bloat-control techniques, then introduce two new kinds of non-parametric parsimony pressure, Direct and Proportional Tournament. As their names suggest, these techniques are based on simple modifications of tournament selection to consider both size and fitness, but not together as a combined parametric equation. We compare the techniques against, and in combination with, the most popular genetic programming bloat-control technique, Koza-style depth limiting, and show that they are effective in limiting size while still maintaining good bestfitness-of-run results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative Bloat Control Methods

Bloat control is an important aspect of evolutionary computation methods, such as genetic programming, which must deal with genomes of arbitrary size. We introduce three new methods for bloat control: Biased Multi-Objective Parsimony Pressure (BMOPP), the Waiting Room, and Death by Size. These methods are unusual approaches to bloat control, and are not only useful in various circumstances, but...

متن کامل

Improving Generalization Ability of Genetic Programming: Comparative Study

In the field of empirical modeling using Genetic Programming (GP), it is important to evolve solution with good generalization ability. Generalization ability of GP solutions get affected by two important issues: bloat and over-fitting. Bloat is uncontrolled growth of code without any gain in fitness and important issue in GP. We surveyed and classified existing literature related to different ...

متن کامل

Symbolic regression, parsimony, and some theoretical considerations about GP search space

Universal Consistency, the convergence to the minimum possible error rate in learning through genetic programming (GP), and Code bloat, the excessive increase of code size, are important issues in GP. This paper proposes a theoretical analysis of universal consistency and code bloat in the framework of symbolic regression in GP, from the viewpoint of Statistical Learning Theory, a well grounded...

متن کامل

Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP

The parsimony pressure method is perhaps the simplest and most frequently used method to control bloat in genetic programming. In this chapter we first reconsider the size evolution equation for genetic programming developed in [28] and rewrite it in a form that shows its direct relationship to Price’s theorem. We then use this new formulation to derive theoretical results that show how to prac...

متن کامل

Apprentissage statistique et programmation génétique: la croissance du code est-elle inévitable?

N. Bredeche, S. Gelly, M. Schoenauer, O. Teytaud. A Statistical Learning Approach to bloat and universal consistency in genetic programming. Poster of Gecco 2005. S. Gelly, O. Teytaud, N. Bredeche, M. Schoenauer. Apprentissage statistique et programmation genetique : la croissance du code est-elle inevitable ? pp163-178. Proceedings of CAP’2005. Universal Consistency, the convergence to the min...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002